Exercise 11

(a) A company makes computer chips from square wafers of silicon. It wants to keep the side length of a wafer very close to 15 mm and it wants to know how the area $A(x)$ of a wafer changes when the side length x changes. Find $A^{\prime}(15)$ and explain its meaning in this situation.
(b) Show that the rate of change of the area of a square with respect to its side length is half its perimeter. Try to explain geometrically why this is true by drawing a square whose side length x is increased by an amount Δx. How can you approximate the resulting change in area ΔA if Δx is small?

Solution

Part (a)
Take the derivative of

$$
A(x)=x^{2}
$$

to find how the area changes when the side length changes.

$$
A^{\prime}(x)=2 x
$$

Consequently,

$$
A^{\prime}(15)=2(15)=30 \mathrm{~mm}
$$

This means that when the side length is 15 mm , the area is increasing by $30 \mathrm{~mm}^{2}$ per millimeter of side length.

Part (b)

The perimeter of a square is $P=x+x+x+x=4 x$, so

$$
A^{\prime}(x)=\frac{P}{2} .
$$

Suppose there's a square with side length x, and the side length then increases by Δx.

The old area is $A_{\text {old }}=x^{2}$, and the new area is

$$
\begin{aligned}
A_{\text {new }} & =x^{2}+x \Delta x+x \Delta x+\Delta x \Delta x \\
& =x^{2}+2 x \Delta x+(\Delta x)^{2}
\end{aligned}
$$

Because Δx is assumed to be small, $(\Delta x)^{2}$ is extremely small compared to $x^{2}+2 x \Delta x$ and can be neglected to a good approximation.

$$
A_{\text {new }} \approx x^{2}+2 x \Delta x
$$

Therefore, the approximate change in area is

$$
\begin{aligned}
\Delta A & =A_{\text {new }}-A_{\text {old }} \\
& \approx\left(x^{2}+2 x \Delta x\right)-x^{2} \\
& \approx 2 x \Delta x .
\end{aligned}
$$

